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Abstract 

In this paper, we research the existence and multiplicity of the solution for singular fourth-order boundary value problem: 
(4) ( , ( )),0 1x f t x t t    , with the boundary conditions (0) (1) (0) (1) 0x x x x     . In this singular boundary value, the 

function has no monotonicity. By using the method of topological degree, we establish solution existence theorem of singular boundary 

value problem. 
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1 Introduction 

 

The ordinary differential equations with singularity appear 

in the application of disciplines such as the gas dynamics, 

fluid mechanics, and the boundary layer theory. The 

simply supported on both ends of bending elastic beam 

balance can be described by fourth-order boundary value 

problems: 

 (4) ( ) 0 1

(0) (1) (0) (1) 0

x f t x t t

x x x x

      


     
 (1) 

This paper is dedicated singular boundary value 

problems where the monotonicity of f  is removed. By 

using the method of topological degree [1-4], multiple 

solution existence theorem of singular boundary value 

problems is established [5-8], namely f  has singularity at 

0, 1t t   and 0x  , satisfying 

1(H )  : (0,1) (0, ) [0, )f      is continuous, 

(t,u) (t) (u)f p q where : (0,1) [0, )p   is continuous, 

and :[0, ) [0, )q     is continuous. 

 

2 Preliminary knowledge and lemma 

 

To state our result, we need some notations. Let 
2[0 1] [0 1]C C    be Banach space, We denote by [0 1]C   the 

norm as 
0 1

, max (t)
t

x x
 

  . We take the equivalent norm 

in 
2[0 1]C  , 

2 0 1 0 1
max (t) max (t) .

t t
x x x x x

   
      

                                                           
* Corresponding author’s e-mail: lchenchen@163.com 

Suppose (t,s) :[0,1] [0,1] RG   be Green function of 

second order linear boundary value problems 0,x   

(0) (1) 0x x  , such as: 

(1 t),  0 1,
(t,s)

(1 s),  0 1.

s s t
G

t t s

   
 

   
 (2) 

A is the operation on 
2[0 1]C  : 

1 1

0 0
( )( ) ( , ) ( , ) ( , ( ))Ax t G t G s f s x s dsd     . (3) 

Through the property of the Green function, we can 

known for 
2[0,1]x C  for 

2[0,1]Ax C  and 

1

0
( ) ( ) ( , ) ( , ( ))Ax t G t s f s x s ds   . (4) 

According to Equation (4) and the property of the 

Green function, we get
2( ) [0,1]Ax C , namely 

4[0,1]Ax C  and: 

(4)( ) ( ) ( , ( ))Ax t f t x t . (5) 

So 
2 4: [0,1] [0,1]A C C  is a continuous map. By 

compactness of embedded 
4 2[0,1] [0,1]C C , We get 

2 2: [0,1] [0,1]A C C   is a universal continuous map. 

From the equation (5), 
2[0,1]x C  is the solution of 

boundary problem(1) if and only if x  is the fixed point of 

A . 

Lemma 1: Let X  be Banach Space, and K X be 

defined a cone on X . For 0p  , pK is defined by 
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 pK x K x p   . Suppose : pF K K be an 

universal continuous map, when 

 px K x K x p     there are Fx x , then 

1) , px Fx x K   containing ( , , ) 0pi F K K  ; 

2) , px Fx x K   containing ( , , ) 1pi F K K  . 

Let E  be 
2[0,1]E C and K  is defined by: 

2 1
[0,1] 0,min ( )

4t J
K x C x x t x



 
    
 

, 

where 
1 3

, [0,1]
4 4

J
 

  
 

 then K can be easily proved 

that K  is a cone of E . 

Lemma 2: If ( )A K K  and :A K K ,  then A is 

an universal continuous operation. 

Proof: For , [0,1]t s  , there are ( , ) ( , )G t s G s s . 

When
1 3

4 4
t  , if  ,1s t , then: 

1 1
( , ) (1 ) (1 ) (1 )

4 4
G t s t s s s s      ; if [0, ]s t , then: 

1 1
( , ) (1 ) (1 )

4 4
G t s s t s s s     . Form the above, we 

have 
1

( , ) (1 ),   ,   [0,1]
4

G t s s s t J s    . So: 

1 1

0 0

1 1

0 0

min( )( ) min ( , ) ( , ) ( , ( ))

1 1
(1 ) ( , ) ( , ( )) .

4 4

t J t J
Ax t G t G s f s x s dsd

G s f s x s dsd Ax

  

   

 
 

 

 

 
 

Thus, there are Ax K , this means ( )A K K . 

The followings prove :A K K  is an universal 

continuous operation. Let B K be a bounded set, then 

there exists 1 0L  , such that 
1x L , for x B  . From 

1( )H , we get: 

 

1 1

0 0

1 1

1
0 0

( ) ( , ) ( , ) ( ) ( ( )) <

max ( ) : 0 ( , ) ( , ) ( ) .

Ax t G t G s p q x s dsd

q x x L G s s G s s p s ds

   

 

 

 
 

Those mean ( )A B  is uniformly bounded. 

As, ( , )G t s is continues on [0,1] [0,1] , thus G is 

uniformly continues. So for all 0  , there exists 

0  , such as when 
1 2t t   , we get: 

 

1 2

1 1
1

1
0 0

( , ) ( , )

(max ( ) : 0 ( , ) ( , ) ( ) ) .

G t G t

q x x L G s s G s s p s ds

 

 

 

   
 

Then for all x B  , there are: 

 
 

1 1

2 1 2 1
0 0

1

( ) ( ) ( , ) ( , ) ( , ) ( )

max ( ) : 0

Ax t Ax t G t G t G s s p s ds

q x x L d

 

 

  

  

 
 

This means ( )A B  is relative convergence. 

Suppose 0 0, ,n nx x K x x  , then  nx is bounded, 

thus there are 

1 1

0 0
0 0

( ) ( ) ( , ) ( , ) ( ) ( ) ( )n nAx t Ax t G t G s p q x q x dsd      
 

Form continuity of q  and Lebesgue dominated 

convergence theorem, we know 
0 0nAx Ax  . This 

means :A K K is a continuous operation. Then 

:A K K is an universal continuous operation. 

 

3 Main Results 

 

Theorem 1 Suppose f  satisfy 1( )H  and the following 

the conditions: 

02 [0,1] [0,1]

( , ) ( , )
( )  lim inf , lim infx xt t

f t x f t x
H

x x
     

3( )H  there exists p  for 0 x p  , such that 

11
0 ( )

2
q x M p  , where 

1

0
0 ( ( , ) ( ) )M G t s p s ds    . 

Then there exist two positive solutions 1 2,x x  for the 

singular fourth-order boundary value problem, which 

satisfy 
1 22 2

0 x p x   . 

Proof: It is very easy to prove that there exists 0 

satisfying 

3

24
1

4

1 1
( , ) 1

4 2

x
G s ds

x
   . From 2( )H  we can 

know that there exists r  satisfying 0 r p  , such that if 

, [0,1]x r t   for then ( , )f t x x . When rx K , 

form the definition of K  we can know: 

1

0

3 3

4 4
1 1 2

4 4

1 1
( ) , ( , ( ))

2 2

1 1 1
, > , > ,

2 4 2

Ax G s f s x s ds

G s xds G s ds x x 

   
     
   

   
   
   



 

 

thus, 
2 2

Ax Ax x  . So: 

( , , ) 0ri A K K  . (6) 

Meanwhile from 2( )H  we can know that there exists 

R satisfying 0R  , if x R , then one has ( , )f t x x , 

Let  max ,4R p R , if Rx K , then we have 

1
min ( )

4t J
x t x R


  , 
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1

0

3 3

4 4
1 1 2

4 4

1 1
( ) , ( , ( ))

2 2

1 1 1
, > , >

2 4 2

Ax G s f s x s ds

G s xds G s ds x x 

   
     
   

   
   
   



 

 

Thus, there are 
2 2

Ax x . So: 

( , , ) 0ri A K K  . (7) 

On the other hand, from 2( )H  we can know if 

px K , then one have 
2

x p  and: 

 

1 1

0 0

1 1

0 0

1 1
1 1

20 0

( ) ( , ) ( , ) ( , ( ))

( , ) ( , ) ( ) ( ( ))

1 1 1
( , ) ( , ) ( ) ,

2 2 2

Ax t G t G s s f s x s dsd

G t G s s p s q x s dsd

G s s ds G s s p s ds M p MM p x

 

 

 

 



 

 

 

 
1

0

1
1

20

( ) ( ) ( , ) ( , ( ))

1
( , ) ( ) = ,

2 2 2

Ax t G s s f s x s ds

M p p
G s s p s ds x



  






, 

So 
2 2 2 2

1 1
( )

2 2
Ax Ax Ax x x x     , and 

( , , ) 0pi A K K  . (8) 

From Equations (6)-(8), we can know: 

( , Ri A K , ) 1,     ( ,p pK K i A K  , ) 1rK K  . 

Thus, there exist two positive solutions 1 2,x x  of A  on 

2[0 1]C   satisfying 
1 22 2

0 x p x   . 

Theorem 2: Suppose f satisfy 2( )H  and the 

following the conditions: 

1 1
04

( ) 1 ( ) 1
( )  lim , lim

2 2
x x

q x q x
H M M

x x

 
   , 

5( )H  there exists p  for 
4

p
x p  , such that 

( , )f t x p , where 

1
3

4
1

4

1
( , )
2

G s ds



 
  
 
 ,  

Then there are two positive solutions 1 2,x x  for the 

singular fourth-order boundary value problem, which 

satisfy 1 22 2
0 x p x   . 

Proof: From 5( )H  we can know that there exists 1r  

satisfying 
1

1: 0 ,0
2

M
r p 



    , such that if 

10 x r   then 
1

( ) ( )
2

M
q x x



  , and if 
1r

x K , then 

ones have 
12

x r . 

 

1 1

0 0

1 1

0 0

1 1
1

0 0

1

1 1

( ) ( , ) ( , ) ( , ( ))

( , ) ( , ) ( ) ( ( ))

1 1
( , ) ( , ) ( )

2 2

1 1
( ) ,
2 2

Ax t G t G s s f s x s dsd

G t G s s p s q x s dsd

G s s ds G s s p s ds M r

M M r r

 

 









 



 
  

 



 

 

 
 

1

0

1
1

1
0

1

1

( ) ( ) ( , ) ( , ( ))

1
( , ) ( )

2

1 1
.

2 2

Ax t G s s f s x s ds

G s s p s ds M r

M M r r









  

 
  

 

 
  

 



  

Thus, 
12 2

( )Ax Ax Ax r x    . So: 

1
( , , ) 0ri A K K  . (9) 

Meanwhile from 4( )H  we can know that there exists 

2 1,r  , satisfying 2 10,0 1r    , if 2x r , then one has 

1

1( ) ( )
2

M
q x x



  . Let  0 2max ( ) 0M q x x r   , if 

[0, ]x   , then we have 
1

1 0( ) ( )
2

M
q x x M



   . Let 

 1

2 1 0, 2maxR M r  , if 
2Rx K  , then we have 

22
x R  and: 

1 1

0 0

1 1

0 0

1 1
1

1 0
0 0

1
1

1 0
0

2 1 2 0 2 0 0

2

( ) ( , ) ( , ) ( , ( ))

( , ) ( , ) ( ) ( ( ))

1 1
( , ) ( ( , ) ( ) )

2 2

1 1
( , )

2 2

1 1

2 2

1 1

2

Ax t G t G s s f s x s dsd

G t G s s p s q x s dsd

G s s ds G s s p s ds M x M

G s s dsM M x M

R M R MM R MM MM

R

 

 











 



  
   

  

  
     

  

     



 

 

 



2
.

2
x

             

1

0

1
1

1 0
0

1

1 0

2 0 0 2 2

( ) ( ) ( , ) ( , ( ))

1
( , ) ( )

2

1
( )
2

1 1 1
.

2 2 2

Ax t G s s f s x s ds

G s s p s ds M x M

M M x M

R MM MM R x









  

  
    

  

 
   

 

   




 

Thus, 
2 2

Ax x . So: 
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2
( , , ) 0Ri A K K  . (10) 

When 
2

,px K x p   , we have  

1

0

1

20

1 1
( ) , ( , ( ))

2 2

1
, .

2

Ax G s f s x s ds

G s ds p p x

   
     
   

 
   

 





 

So: 

( , , ) 0pi A K K  . (11) 

From (9)-(11), we can know: 

2
( , Ri A K , ) 1,     ( ,p pK K i A K

1
, ) 1rK K    

So there are two positive solutions 1 2,x x  of A  on 

2[0 1]C   satisfying 
1 22 2

0 x p x   . 
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